Goto

Collaborating Authors

 Denver


Probabilistic Neural Networks (PNNs) with t-Distributed Outputs: Adaptive Prediction Intervals Beyond Gaussian Assumptions

arXiv.org Machine Learning

Traditional neural network regression models provide only point estimates, failing to capture predictive uncertainty. Probabilistic neural networks (PNNs) address this limitation by producing output distributions, enabling the construction of prediction intervals. However, the common assumption of Gaussian output distributions often results in overly wide intervals, particularly in the presence of outliers or deviations from normality. To enhance the adaptability of PNNs, we propose t-Distributed Neural Networks (TDistNNs), which generate t-distributed outputs, parameterized by location, scale, and degrees of freedom. The degrees of freedom parameter allows TDistNNs to model heavy-tailed predictive distributions, improving robustness to non-Gaussian data and enabling more adaptive uncertainty quantification. We develop a novel loss function tailored for the t-distribution and derive efficient gradient computations for seamless integration into deep learning frameworks. Empirical evaluations on synthetic and real-world data demonstrate that TDistNNs improve the balance between coverage and interval width. Notably, for identical architectures, TDistNNs consistently produce narrower prediction intervals than Gaussian-based PNNs while maintaining proper coverage. This work contributes a flexible framework for uncertainty estimation in neural networks tasked with regression, particularly suited to settings involving complex output distributions.


Samoyeds: Accelerating MoE Models with Structured Sparsity Leveraging Sparse Tensor Cores

arXiv.org Artificial Intelligence

The escalating size of Mixture-of-Experts (MoE) based Large Language Models (LLMs) presents significant computational and memory challenges, necessitating innovative solutions to enhance efficiency without compromising model accuracy. Structured sparsity emerges as a compelling strategy to address these challenges by leveraging the emerging sparse computing hardware. Prior works mainly focus on the sparsity in model parameters, neglecting the inherent sparse patterns in activations. This oversight can lead to additional computational costs associated with activations, potentially resulting in suboptimal performance. This paper presents Samoyeds, an innovative acceleration system for MoE LLMs utilizing Sparse Tensor Cores (SpTCs). Samoyeds is the first to apply sparsity simultaneously to both activations and model parameters. It introduces a bespoke sparse data format tailored for MoE computation and develops a specialized sparse-sparse matrix multiplication kernel. Furthermore, Samoyeds incorporates systematic optimizations specifically designed for the execution of dual-side structured sparse MoE LLMs on SpTCs, further enhancing system performance. Evaluations show that Samoyeds outperforms SOTA works by up to 1.99$\times$ at the kernel level and 1.58$\times$ at the model level. Moreover, it enhances memory efficiency, increasing maximum supported batch sizes by 4.41$\times$ on average. Additionally, Samoyeds surpasses existing SOTA structured sparse solutions in both model accuracy and hardware portability.


Adaptive Anomaly Recovery for Telemanipulation: A Diffusion Model Approach to Vision-Based Tracking

arXiv.org Artificial Intelligence

Dexterous telemanipulation critically relies on the continuous and stable tracking of the human operator's commands to ensure robust operation. Vison-based tracking methods are widely used but have low stability due to anomalies such as occlusions, inadequate lighting, and loss of sight. Traditional filtering, regression, and interpolation methods are commonly used to compensate for explicit information such as angles and positions. These approaches are restricted to low-dimensional data and often result in information loss compared to the original high-dimensional image and video data. Recent advances in diffusion-based approaches, which can operate on high-dimensional data, have achieved remarkable success in video reconstruction and generation. However, these methods have not been fully explored in continuous control tasks in robotics. This work introduces the Diffusion-Enhanced Telemanipulation (DET) framework, which incorporates the Frame-Difference Detection (FDD) technique to identify and segment anomalies in video streams. These anomalous clips are replaced after reconstruction using diffusion models, ensuring robust telemanipulation performance under challenging visual conditions. We validated this approach in various anomaly scenarios and compared it with the baseline methods. Experiments show that DET achieves an average RMSE reduction of 17.2% compared to the cubic spline and 51.1% compared to FFT-based interpolation for different occlusion durations.


Bio-Skin: A Cost-Effective Thermostatic Tactile Sensor with Multi-Modal Force and Temperature Detection

arXiv.org Artificial Intelligence

Tactile sensors can significantly enhance the perception of humanoid robotics systems by providing contact information that facilitates human-like interactions. However, existing commercial tactile sensors focus on improving the resolution and sensitivity of single-modal detection with high-cost components and densely integrated design, incurring complex manufacturing processes and unaffordable prices. In this work, we present Bio-Skin, a cost-effective multi-modal tactile sensor that utilizes single-axis Hall-effect sensors for planar normal force measurement and bar-shape piezo resistors for 2D shear force measurement. A thermistor coupling with a heating wire is integrated into a silicone body to achieve temperature sensation and thermostatic function analogous to human skin. We also present a cross-reference framework to validate the two modalities of the force sensing signal, improving the sensing fidelity in a complex electromagnetic environment. Bio-Skin has a multi-layer design, and each layer is manufactured sequentially and subsequently integrated, thereby offering a fast production pathway. After calibration, Bio-Skin demonstrates performance metrics-including signal-to-range ratio, sampling rate, and measurement range-comparable to current commercial products, with one-tenth of the cost. The sensor's real-world performance is evaluated using an Allegro hand in object grasping tasks, while its temperature regulation functionality was assessed in a material detection task.


Applications of deep reinforcement learning to urban transit network design

arXiv.org Artificial Intelligence

This thesis concerns the use of reinforcement learning to train neural networks to aid in the design of public transit networks. The Transit Network Design Problem (TNDP) is an optimization problem of considerable practical importance. Given a city with an existing road network and travel demands, the goal is to find a set of transit routes - each of which is a path through the graph - that collectively satisfy all demands, while minimizing a cost function that may depend both on passenger satisfaction and operating costs. The existing literature on this problem mainly considers metaheuristic optimization algorithms, such as genetic algorithms and ant-colony optimization. By contrast, we begin by taking a reinforcement learning approach, formulating the construction of a set of transit routes as a Markov Decision Process (MDP) and training a neural net policy to act as the agent in this MDP. We then show that, beyond using this policy to plan a transit network directly, it can be combined with existing metaheuristic algorithms, both to initialize the solution and to suggest promising moves at each step of a search through solution space. We find that such hybrid algorithms, which use a neural policy trained via reinforcement learning as a core component within a classical metaheuristic framework, can plan transit networks that are superior to those planned by either the neural policy or the metaheuristic algorithm. We demonstrate the utility of our approach by using it to redesign the transit network for the city of Laval, Quebec, and show that in simulation, the resulting transit network provides better service at lower cost than the existing transit network.


OrderSum: Semantic Sentence Ordering for Extractive Summarization

arXiv.org Artificial Intelligence

The sentence-level framework defines extractive summarization as an individual sentence selection problem, determining whether each sentence in a document should be included in the summary. However, the sentence-level framework often produces summaries that contain only general sentences or repeat important but similar sentences (Narayan et al., 2018b; Zhong et al., 2020). The summary-level framework overcomes this limitation by defining extractive summarization as a summary ranking problem rather than a sentence selection problem. The main idea of the summary-level framework is to generate a set of candidate summaries consisting of different sentences, and then rank them to select the best summary. By considering sentence composition at the entire summary level rather than sentence by sentence, this approach enables each sentence in the summary to convey different, specific information (Narayan et al., 2018b; Zhong et al., 2020). Previous work in both frameworks has primarily focused on improving which sentences to include in the summary, or in other words, sentence inclusion. However, to the best of our knowledge, the importance of sentence order in summaries has not been highlighted since the era of graph-based extractive summarization (Mihalcea and Ta-rau, 2004; Erkan and Radev, 2004). The sentence order of a text plays a crucial role not only in readability but also in its meaning (Yin et al., 2019; Lo-geswaran et al., 2018). Table 1 illustrates how the arXiv:2502.16180v1


ROADWork Dataset: Learning to Recognize, Observe, Analyze and Drive Through Work Zones

arXiv.org Artificial Intelligence

Perceiving and navigating through work zones is challenging and under-explored, even with major strides in self-driving research. An important reason is the lack of open datasets for developing new algorithms to address this long-tailed scenario. We propose the ROADWork dataset to learn how to recognize, observe and analyze and drive through work zones. We find that state-of-the-art foundation models perform poorly on work zones. With our dataset, we improve upon detecting work zone objects (+26.2 AP), while discovering work zones with higher precision (+32.5%) at a much higher discovery rate (12.8 times), significantly improve detecting (+23.9 AP) and reading (+14.2% 1-NED) work zone signs and describing work zones (+36.7 SPICE). We also compute drivable paths from work zone navigation videos and show that it is possible to predict navigational goals and pathways such that 53.6% goals have angular error (AE) < 0.5 degrees (+9.9 %) and 75.3% pathways have AE < 0.5 degrees (+8.1 %).


Show, Don't Tell: Aligning Language Models with Demonstrated Feedback

arXiv.org Artificial Intelligence

Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. Steering LLMs away from generic output is possible through supervised finetuning or RLHF, but requires prohibitively large datasets for new ad-hoc tasks. We argue that it is instead possible to align an LLM to a specific setting by leveraging a very small number ($<10$) of demonstrations as feedback. Our method, Demonstration ITerated Task Optimization (DITTO), directly aligns language model outputs to a user's demonstrated behaviors. Derived using ideas from online imitation learning, DITTO cheaply generates online comparison data by treating users' demonstrations as preferred over output from the LLM and its intermediate checkpoints. We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts. Additionally, we conduct a user study soliciting a range of demonstrations from participants ($N=16$). Across our benchmarks and user study, we find that win-rates for DITTO outperform few-shot prompting, supervised fine-tuning, and other self-play methods by an average of 19% points. By using demonstrations as feedback directly, DITTO offers a novel method for effective customization of LLMs.


From Displacements to Distributions: A Machine-Learning Enabled Framework for Quantifying Uncertainties in Parameters of Computational Models

arXiv.org Machine Learning

This work presents novel extensions for combining two frameworks for quantifying both aleatoric (i.e., irreducible) and epistemic (i.e., reducible) sources of uncertainties in the modeling of engineered systems. The data-consistent (DC) framework poses an inverse problem and solution for quantifying aleatoric uncertainties in terms of pullback and push-forward measures for a given Quantity of Interest (QoI) map. Unfortunately, a pre-specified QoI map is not always available a priori to the collection of data associated with system outputs. The data themselves are often polluted with measurement errors (i.e., epistemic uncertainties), which complicates the process of specifying a useful QoI. The Learning Uncertain Quantities (LUQ) framework defines a formal three-step machine-learning enabled process for transforming noisy datasets into samples of a learned QoI map to enable DC-based inversion. We develop a robust filtering step in LUQ that can learn the most useful quantitative information present in spatio-temporal datasets. The learned QoI map transforms simulated and observed datasets into distributions to perform DC-based inversion. We also develop a DC-based inversion scheme that iterates over time as new spatial datasets are obtained and utilizes quantitative diagnostics to identify both the quality and impact of inversion at each iteration. Reproducing Kernel Hilbert Space theory is leveraged to mathematically analyze the learned QoI map and develop a quantitative sufficiency test for evaluating the filtered data. An illustrative example is utilized throughout while the final two examples involve the manufacturing of shells of revolution to demonstrate various aspects of the presented frameworks.


Automated Machine Learning for Multi-Label Classification

arXiv.org Artificial Intelligence

Automated machine learning (AutoML) aims to select and configure machine learning algorithms and combine them into machine learning pipelines tailored to a dataset at hand. For supervised learning tasks, most notably binary and multinomial classification, aka single-label classification (SLC), such AutoML approaches have shown promising results. However, the task of multi-label classification (MLC), where data points are associated with a set of class labels instead of a single class label, has received much less attention so far. In the context of multi-label classification, the data-specific selection and configuration of multi-label classifiers are challenging even for experts in the field, as it is a high-dimensional optimization problem with multi-level hierarchical dependencies. While for SLC, the space of machine learning pipelines is already huge, the size of the MLC search space outnumbers the one of SLC by several orders. In the first part of this thesis, we devise a novel AutoML approach for single-label classification tasks optimizing pipelines of machine learning algorithms, consisting of two algorithms at most. This approach is then extended first to optimize pipelines of unlimited length and eventually configure the complex hierarchical structures of multi-label classification methods. Furthermore, we investigate how well AutoML approaches that form the state of the art for single-label classification tasks scale with the increased problem complexity of AutoML for multi-label classification. In the second part, we explore how methods for SLC and MLC could be configured more flexibly to achieve better generalization performance and how to increase the efficiency of execution-based AutoML systems.